Pola Argumentasi Matematis Siswa SMP dalam Menyelesaikan Masalah HOTS Aljabar
Mathematical Argumentation Patterns of Junior High School Students in Solving HOTS Algebra Problems
Pengumpulan data dilakukan dengan menggunakan Tugas Pemecahan Masalah HOTS (TPMH), wawancara berbasis tugas dan peneliti sebagai instrumen utamanya. Sebelum pelaksanan pengumpulan data, dua puluh subjek secara sukarela dikumpulkan dalam satu ruang kelas khusus yang telah disediakan. Pengumpulan subjek ini telah memperoleh izin dari Sekolah. Kemudian, sekelompok siswa tersebut diberi pembelajaran dengan desain yang relevan dengan argumentasi matematis selama 2 x 40 menit. Kegiatan ini merujuk pada suatu sesi pembelajaran yang dirancang khusus untuk melibatkan siswa dalam kegiatan argumentasi matematis. Pembelajaran ini diberikan karena siswa belum terbiasa dengan argumentasi matematis. Setelah itu, subjek diberi TPMH. TPMH ini terdiri dari TPMH 1, TPMH 2 dan TPMH 3. TPMH 2 dan TPMH 3 memiliki jenis dan isi yang serupa dengan TPMH 1, perbedaannya hanya terletak pada angka-angka yang ada pada soal. TPMH 2 dan TPMH 3 digunakan sebagai triangulasi untuk mengecek kredibilitas jawaban siswa. Selain itu, pengumpulan data juga dilakukan melalui wawancara berbasis tugas yang bertujuan untuk untuk memverifikasi dan mengonfirmasi temuan. Teknik analisis data dalam penelitian ini dilakukan menggunakan tiga tahap, yaitu: (1) mengidentifikasi argumen yang subjek klaim pahami ketika memeriksa pemecahan masalah HOTS aljabar, (2) mengidentifikasi argumen yang subjek justifikasi (data dan alasan) ketika memeriksa pemecahan masalah, dan (3) mengidentifikasi pola jawaban TPMH siswa berdasarkan dimensi structure, content, dan recipient-orientation (Meyer & Schnell, 2020).
Hasil penelitian menunjukkan perbedaan pola argumentasi matematis antara siswa dengan kemampuan matematika yang tinggi dan siswa dengan kemampuan matematika yang rendah. Siswa dengan kemampuan matematika tinggi menunjukkan tingkat pola argumentasi yang lebih tinggi daripada siswa dengan kemampuan matematika rendah. Siswa dengan tingkat kemampuan matematika tinggi dapat memahami pertanyaan dan masalah yang disajikan, memahami konsep-konsep aljabar yang tersaji, kemampuan untuk mengaitkan konsep-konsep tersebut, serta kemampuan dalam merumuskan dan menyajikan argumen secara logis. Pola-pola argumentasi pada siswa dengan tingkat kemampuan matematika tinggi lebih bervariasi daripada siswa dengan tingkat kemampuan matematika rendah. Siswa dengan kemampuan tinggi cenderung menggunakan pola argumen CS+ES+RT (kualitas klaim rendah, data sedang, alasan tinggi), CT+ES+RR (kualitas klaim tinggi, data sedang, alasan rendah), CT+ES+RT (kualitas klaim tinggi, data sedang, alasan tinggi), dan CT+ET+RR (kualitas klaim tinggi, data tinggi, alasan rendah), sedangkan siswa dengan kemampuan rendah cenderung menggunakan pola argumen CR+ER+RR (argumen dengan kualitas yang rendah). Meskipun demikian, tidak ada siswa yang menggunakan pola CT+ET+RT (argumen dengan kualitas tertinggi). Hasil temuan ini memiliki implikasi sebagai sumber daya berharga bagi guru dalam memantau kemajuan siswa mereka dan mencegah atau mengurangi berbagai kesulitan atau ketidakakuratan yang mungkin siswa hadapi. Berdasarkan temuan ini, peneliti mengusulkan desain khusus untuk kegiatan pembelajaran di kelas.
Argumentation patterns can be useful for identifying and assessing the quality of arguments, as well as for finding and producing complete and strong arguments. However, mathematical argumentation patterns in junior high school mathematics classes have received little attention. This study aims to identify the argumentation patterns used by junior high school students when solving HOTS algebra problems. The study employed a qualitative approach to exploratory research, utilizing the Claim-Evidence-Reasoning (CER) model (McNeill & Krajcik, 2008) and the argument quality framework. This study was conducted at SMP Negeri 1 Cikampek, Karawang, West Java, Indonesia which was selected as the research site due to specific requirements that were met. These requirements included national accreditation A, absence of grouping of students with high academic ability in a particular class, no prior research on mathematical argumentation in solving algebra HOTS problems at the school, and the school's willingness to support and serve as a research site. These students were given a math ability test, and the research subjects were then selected based on their scores. The study's population consisted of seventh-grade junior high school students from a selected school, with a sample size of 225 students from six student groups. Specifically, 10 students with the highest math ability test scores and 10 students with the lowest math ability test scores were chosen.
Data collection was conducted using HOTS Problem Solving Tasks (TPMH), task-based interviews and the researcher as the main instrument. Prior to the data collection, twenty subjects volunteered to be gathered in one special classroom that had been provided. This collection of subjects had obtained permission from the school. Then, the group of students was given a design lesson relevant to mathematical argumentation for minutes. This lesson was given because the students were not familiar with mathematical argumentation. Following this, the subjects were given TPMH. TPMH 2 and TPMH 3 are similar to TPMH 1 in terms of type and content, with the only difference being the problem numbers. They were used as a triangulation method to verify the credibility of students' answers. Furthermore, data collection was conducted through task-based interviews to confirm the findings. The study employed a three-stage data analysis technique. Firstly, arguments that the subject claims to understand when examining algebraic HOTS problem solving were identified. Secondly, arguments that the subject justifies, including data and reasons, were identified when examining problem solving. Finally, patterns of students' TPMH answers were identified based on the dimensions of structure, content, and recipient-orientation (Meyer & Schnell, 2020).
The study revealed variations in mathematical argumentation patterns between students with high and low mathematical ability. Students with high mathematical ability demonstrated a greater level of argumentation patterns than those with low mathematical ability. Students with strong mathematical abilities can comprehend presented questions and problems, understand algebraic concepts, make connections between these concepts, and formulate and present logical arguments. The argumentation patterns of students with a high level of mathematical ability are more varied than those of students with a low level of mathematical ability. The study found that students with high ability tended to use argument patterns such as CS+ES+RT (low claim quality, medium data, high reasoning), CT+ES+RR (high claim quality, medium data, low reasoning), CT+ES+RT (high claim quality, medium data, high reasoning), and CT+ET+RR (high claim quality, high data, low reasoning). On the other hand, students with low ability tended to use CR+ER+RR (low quality argument) patterns. Notably, none of the students used the CT+ET+RT pattern, which is considered the highest quality argument pattern. The findings have implications as a valuable resource for teachers to monitor their students' progress and prevent or mitigate various difficulties or inaccuracies that students may encounter. Based on these findings, researchers propose a specific design for learning activities in the classroom.