Misalkan graf terhubung dengan himpunan titik V(G) dan himpunan sisi E(G), bilangan Fibonacci grafg G adalah banyaknya himpunan independen I(G), i(G)=|I(G) dengan i(G) adalah bilangan Fibonacci graf G. Pada skripsi ini akan dibahas mengenai bilangan Fibonacci graf lintasan, graf sikel dan graf cebong. Bilangan Fibonacci graf lintasan adalah F(n+2) sedangkan bilangan Fibonacci graf sikel adalah L(n). Lebih lanjut akan dibahas mengenai sifat-sifat himpunan independen graf cebong yang bersesuaian dengan bilangan Fibonacci graf cebong, adapun graf cebong merupakan graf hasil gabungan graf lintasan dan graf sikel. Dalam pembahasan ini, dibahas sifat himpunan independen graf Cebong terhadap bilangan Fibonacci.
Let G is a connected graph with vertex set V(G) and edge E(G) , fibonacci number of graph G is union of independent set I(G), i(G)=|I(G) with i(G) is defined by Fibonacci number of a graph G. In this thesis, will be discussed about Fibonacci number of path graph, cycle graph , and Tadpole graph. Fibonacci number of path graph defined by F(n+2) , while fibonacci number of cycle graph defined by L(n). Furthermore, will be discussed about properties in independent set of tadpole graph which is corresponding to fibonacci number of Tadpole graph, tadpole graph is union of path graph and sikel graph. In this discussion will be discussed about properties of independent graph to fibonacci number.