ANALISIS STRUKTUR PADA DESAIN CHASSIS MOBIL LISTRIK RODA TIGA MENGGUNAKAN METODE ELEMEN HINGGA
STRUCTURAL ANALYSIS OF THREE-WHEELED ELECTRIC VEHICLE CHASSIS DESIGN USING FINITE ELEMENT METHOD
Mobilitas merupakan aspek penting yang memungkinkan individu mengakses pendidikan, pekerjaan, layanan kesehatan, serta aktivitas sosial. Namun, bagi penyandang disabilitas, mobilitas sering kali menjadi tantangan akibat keterbatasan fisik. Mobil listrik memiliki potensi besar untuk memenuhi kebutuhan mobilitas penyandang disabilitas, karena ukuran mesinnya yang kecil memungkinkan rancangan lantai datar untuk memudahkan akses kursi roda dan modifikasi interior. Selain itu, mobil listrik memiliki efisiensi tinggi hingga 96%, dibandingkan mesin pembakaran internal yang hanya mencapai 35–40%. Penelitian ini bertujuan merancang chassis mobil listrik roda tiga sebagai solusi mobilitas inklusif bagi penyandang disabilitas.
Perancangan dilakukan melalui analisis Finite Element Analysis (FEA) dengan mempertimbangkan beban vertikal, lateral (belok), pengereman dan gabungan. Penelitian menggunakan metode simulasi dengan variasi ketebalan material 2 mm, 2,5 mm, dan 3 mm, yang dianalisis menggunakan FEA untuk mengidentifikasi distribusi tegangan dan deformasi akibat pembebanan vertikal, lateral (belok), pengereman dan gabungan. Simulasi mempertimbangkan beban statis dan dinamis untuk hasil lebih realistis. Perancangan geometri chassis menggunakan Autodesk Inventor Professional 2024 dengan fitur 3D Sketch, sementara simulasi beban dilakukan dengan Ansys Workbench 2024 R2.
Hasil simulasi menunjukkan bahwa untuk pembebanan vertikal, ketebalan 2 mm menjadi pilihan terbaik dengan mempertimbangkan safety factor dan efisiensi material. Pada pembebanan lateral, ketebalan 2,5 mm lebih unggul karena ketebalan 2 mm tidak memenuhi nilai safety factor minimum. Pada pembebanan pengereman, ketebalan 2 mm dan 2,5 mm masih dinilai aman. Namun, pada pembebanan gabungan, ketebalan 2 mm dan 2,5 mm dikategorikan tidak aman karena tidak memenuhi safety factor minimum 1,5. Dengan mempertimbangkan kekuatan dan keamanan, desain dengan ketebalan 3 mm dinyatakan paling memenuhi syarat dan menjadi pilihan desain yang paling aman.
Kata Kunci: Mobilitas, Mobil listrik, Chassis, Finite Element Analysis
Mobility is a crucial aspect that enables individuals to access education, employment, healthcare services, and social activities. However, for people with disabilities, mobility often becomes a major challenge due to physical limitations. Electric vehicles have significant potential to meet the mobility needs of individuals with disabilities, as their smaller engine size allows for flat floor designs, facilitating wheelchair access and interior modifications. Additionally, electric vehicles offer high efficiency, reaching up to 96%, compared to internal combustion engines, which only achieve around 35–40% efficiency. This study aims to design a three-wheeled electric vehicle chassis as an inclusive mobility solution for people with disabilities.
The design process was carried out using Finite Element Analysis (FEA), considering vertical loads, lateral (turning) loads, braking loads, and combined loading conditions. The study employed a simulation method with material thickness variations of 2 mm, 2.5 mm, and 3 mm, analyzed using FEA to identify stress distribution and deformation resulting from vertical, lateral (turning), braking, and combined loads. The simulations took into account both static and dynamic loading conditions to produce more realistic results. The chassis geometry was designed using Autodesk Inventor Professional 2024 with the 3D Sketch feature, while load simulations were conducted using Ansys Workbench 2024 R2.
The simulation results showed that for vertical loading, the 2 mm thickness was the best option considering the safety factor and material efficiency. For lateral loading, the 2.5 mm thickness was more suitable, as the 2 mm thickness failed to meet the minimum safety factor. For braking loads, the 2 mm and 2,5 mm thickness was still considered safe. However, under combined loading conditions, both the 2 mm and 2.5 mm designs were deemed unsafe as they did not meet the minimum required safety factor of 1.5. Taking strength and safety into consideration, the 3 mm thickness design was found to be the most compliant and was selected as the safest design option.
Keywords: Mobility, Electric Vehicle, Chassis, Finite Element Analysis