Aljabar incline merupakan generalisasi semiring dan latis. Aljabar incline adalah himpunan tak-kosong dengan operasi biner “+ ” dan “* ” memenuhi aksioma-aksioma berikut: R1. x+y=y+x. R2. x+(y+z)=(x+y)+z. R3. x*(y+z)=(x*y)+z. R4. x*(y+z)=(x*y)+(y*z).
R5. (y+z)*x=(y*x)+(z*x). R6. x+x=x. R7. x+(x*y)=x. R8. y+(x*y)=y. Skripsi ini membahas sifat-sifat bi-multiplier simetrik pada aljabar incline.
Kata kunci: Aljabar incline, bi-multiplier simetrik pada aljabar incline, latis
Incline algebra is a generalization semiring and lattice. Incline algebra is an empty set with binary operations and satisfies the following axioms: R1. x+y=y+x. R2. x+(y+z)=(x+y)+z. R3. x*(y+z)=(x*y)+z. R4. x*(y+z)=(x*y)+(y*z).
R5. (y+z)*x=(y*x)+(z*x). R6. x+x=x. R7. x+(x*y)=x. R8. y+(x*y)=y.
This thesis discusses some properties of symmetric bi-multiplier in incline algebra
Keywords: Incline algebra, symmetric bi-multiplier of incline algebra, lattice.