KONSTRUKSI KONJEKTUR SISWA SECARA KOLABORATIF BERBANTUAN GEOGEBRA TOPIK SEGITIGA
COLLABORATIVE STUDENT CONJECTURING ASSISTED GEOGEBRA FOR TRIANGLE TOPIC
Penalaran dan pembuktian merupakan bagian dari kegiatan matematika. Salah satu kegiatan dari penalaran dan pembuktian adalah mengonstruksi konjektur. Pada beberapa penelitian, keterampilan siswa dalam mengonstruksi konjektur masih kurang. Konstruksi konjektur dapat dimaksimalkan melalui diskusi kolaboratif. Geogebra membantu siswa dalam visualisasi,konstruksi,dan penemuan konsep. Penelitian ini bertujuan mendeskripsikan konstruksi konjektur siswa secara kolaboratif berbantuan geogebra topik segitiga dan keterampilan sosial siswa. Penelitian ini merupakan penelitian deskriptif kualitatif. Data diperoleh melalui tugas, wawancara, dan observasi. Subjek pada penelitian ini adalah 4 kelompok yang terbagi dalam kelompok homogen tinggi, homogen sedang, homogen rendah, dan heterogen. Konstruksi konjektur dianalisis berdasarkan tahapan (1)memahami masalah,(2)mengeksplorasi masalah,(3)merumuskan konjektur,(4)membenarkan konjektur,dan(5)membuktikan konjektur. Sementara keterampilan sosial siswa dianalisis berdasarkan indikator interaksi, pengambilan perspektif, dan regulasi sosial. Hasil penelitian menunjukkan bahwa pada kelompok homogen tinggi, semua anggota aktif dalam berdiskusi, dalam memahami masalah mereka menuliskan informasi tentang segitiga, mengeksplorasi segitiga menggunakan geogebra, merumuskan konjektur dari hasil eksplorasi segitiga, membenarkan konjektur dan membuktikan konjekturnya. Pada kelompok homogen sedang, tidak semua anggota aktif berdiskusi, mereka dapat memahami informasi segitiga, diskusi dalam mengeksplorasi segitiga menggunakan geogebra, merumuskan konjektur dari hasil eksplorasi, membenarkan konjektur dan membuktikan konjekturnya. Pada kelompok homogen rendah, tidak terlihat diskusi dalam kelompok, mereka membagi tugas dalam mengonstruksi konjektur, mereka kesulitan memahami informasi segitiga, mereka mengeksplorasi tidak menggunakan geogebra sehingga konjektur yang dibuat dari hasil tebakan, mereka tidak membenarkan dan membuktikan konjektur. Pada kelompok heterogen, hanya satu siswa yang aktif dan mempunyai tanggungjawab, ia memahami masalah sendiri, mengeksplorasi segitiga menggunakan geogebra, merumuskan konjektur berdasarkan hasil eksplorasi, mereka membuktikan konjektur tapi tidak membenarkan konjektur.
Kata Kunci : Konstruksi konjektur, kolaboratif, keterampilan sosial, Geogebra
Reasoning and proof are part of mathematical activities. One of the activities of reasoning and proof is constructing conjectures. In several studies, students' skills in constructing conjectures are still lacking. Conjecture construction can be maximized through collaborative discussions. Geogebra helps students in visualization, construction, and discovery of concepts. This study aims to describe students' conjecture construction collaboratively assisted by Geogebra on the topic of triangles and students' social skills. This study is a qualitative descriptive study. Data were obtained through assignments, interviews, and observations. The subjects in this study were 4 groups divided into high homogeneity, medium homogeneity, low homogeneity, and heterogeneity groups. Conjecture construction was analyzed based on the stages of (1) understanding the problem, (2) exploring the problem, (3) formulating conjectures, (4) justifying conjectures, and (5) proving conjectures. Meanwhile, students' social skills were analyzed based on indicators of interaction, perspective taking, and social regulation. The results of the study showed that in the high homogeneity group, all members were active in discussing, in understanding the problem they wrote down information about triangles, explored triangles using geogebra, formulated conjectures from the results of triangle exploration, confirmed conjectures and proved their conjectures. In the medium homogeneity group, not all members were active in discussing, they could understand triangle information, discuss exploring triangles using geogebra, formulate conjectures from the results of exploration, confirmed conjectures and proved their conjectures. In the low homogeneity group, there was no discussion in the group, they divided tasks in constructing conjectures, they had difficulty understanding triangle information, they explored without using geogebra so that the conjectures made were from guesses, they did not confirm and prove conjectures. In the heterogeneous group, only one student was active and had responsibility, he understood the problem himself, explored triangles using geogebra, formulated conjectures based on the results of exploration, they proved conjectures but did not confirm conjectures.
Keywords: Construction of conjecture, collaborative, social skills, Geogebra